How to talk about mathematics

Ionica Smeets - March 20 2018

My background

TV show: Eureka

Scores in five world championships

	0	1	2	3	4	5	6	7	8
0	25								
1	66	35							
2	39	54	9						
3	21	19	13	1					
4	10	6	1						
5	2								
6	1	2							
7	1								
8	1								

The deficit model

Deficit model

- Basic idea: if you give people more knowledge, they will embrace the facts.
- Backfires in many occasions.
- Enhances polarization between groups.

Example: more information about vaccines does not convince parents

Image:Peter Lewis - DFID

Example: more science literacy enhances polarization in climate change debate.

Kahan, Dan M., et al. "The polarizing impact of science literacy and numeracy on perceived climate change risks." Nature climate change 2.10 (2012): 732-735.

'We just give them the numbers'

Outbreak of Asian flue expected to cost 600 lives

Image: Nikolay Olkhovoy

- Strategy A: 200 people will be saved
- Strategy B: there is a 1/3 probability that 600 people will be saved, and a 2/3 probability that no people will be saved

72% of participants prefers strategy A

- Strategy A: 400 people will die
- Strategy B: there is a 1/3 probability that nobody will die, and a 2/3 probability that 600 people will die

Suddenly 78% of participants prefers strategy B

Audience First!

Simpsons paradox

Discrimination at Berkeley

Data Berkeley 1973

	Men	Women
Applications	8842	4321
Admitted	44%	35%

Data Berkeley 1973 a closer look

Department	N	len	Women		
	Appli- cations	Admitted	Appli- cations	Admitted	
A	825	62%	108	82%	
B	560	63%	25	68%	
C	325	37%	593	34%	
V	417	337。	375	35%	
E	191	28%	393	24%	
F	272	6%	341	7%	

Data Berkeley 1973

	Men	Women
Applications	8842	4321
Admitted	44%	35%

Simpsons paradox:

A trend in different groups is reversed when the groups are combined.

Kidney stones

Batting averages

Keith Allison

Holland Casino

Money

spent

Hours of entertainment

Hours of entertainment

Narrative

Outline

Introduction (theory & literature)

- TiN coating properties, improvement TiN properties
- Fullerenes: WS2 (shortly), C60 (tribological properties)
- Deposition processes (Vacuum arc, Effusion cell)
- Project goals
- Experimental apparatus and procedure
- Results and discussion
- Summary and conclusions
- Open questions and recommendations

Outline of this talk

Introduction about Pythagoras

Conclusions

Narrative tricks

- sensory language
- conjunctions
- connectivity
- appeal to the reader

Image: Philip Scalia

A great start

MARCUSduSAUTOY

Position of the stomach

Results from patients

The test is positive

Word	Scientist thinks of	General public thinks of	
chaos	system very sensitive to small changes	their garage	
robot	machine for some task	terminator	
theory	best explanation of the facts	just another opinion	
X	a variable	a kiss	
model	simplified version of reality	Phaedra Hoste	

Pilot study: geophysics

Images: Apollo 17, John McColgan, Jiri Büller

15. Which of the following photos is, in your opinion, the best depiction of a flood?

Survey for experts and laymen

Discover the world at Leiden University

What is a river?	Lay people	Experts
vilat is a river?	(N = 119)	(N = 34)
Path of fresh water	-10/ $00/$	
flowing into the ocean	71%	9/0
Water flowing only on the	n the	
surface of the land and	4%	3%
never underground		
Large stream which serves		
as the natural drainage for	15%	88%
a basin		
Flow of surface water	100/ 00/	
within a straight channel	10%	U /0

Discover the world at Leiden University

Next plan: do something similar for words used to describe probabilities in the media.

A special kind of jargon

$\varphi \left(\frac{\partial u}{\partial x} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + v \frac{\partial u}{\partial u} \right) =$
$\rho g_{1} = \frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left[2\rho \frac{\partial \omega}{\partial x} + B \nabla \cdot \mathbf{V} \right] + \frac{\partial}{\partial y} \left[\rho \left(\frac{\partial \omega}{\partial y} + \frac{\partial \mathbf{V}}{\partial x} \right) \right] + \frac{\partial}{\partial z} \left[\rho \left(\frac{\partial \omega}{\partial x} + \frac{\partial \omega}{\partial z} \right) \right]$
$\mu\left(\frac{\partial w}{\partial x} + w\frac{\partial w}{\partial x} + \frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z}\right) =$
$\mu g_{\mu} = \frac{\partial p}{\partial y} + \frac{\partial}{\partial y} \left[2\mu \frac{\partial u}{\partial y} + 2\nabla \cdot \mathbf{V} \right] + \frac{\partial}{\partial z} \left[\mu \left[\frac{\partial v}{\partial z} - \frac{\partial v}{\partial y} \right] \right] + \frac{\partial}{\partial z} \left[\mu \left[\frac{\partial w}{\partial y} + \frac{\partial v}{\partial x} \right] \right]$
$\rho \left[\frac{\partial w}{\partial r} + w \frac{\partial w}{\partial x} + w \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} \right] =$
$\mu g_{\mu} - \frac{\partial g}{\partial z} + \frac{\partial}{\partial z} \left[2\mu \frac{\partial w}{\partial z} + \partial v - V \right] + \frac{\partial}{\partial w} \left[\mu \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) \right] + \frac{\partial}{\partial v} \left[\mu \left(\frac{\partial w}{\partial z} + \frac{\partial u}{\partial y} \right) \right]$

Science communication is like a caravan - about metaphors.

Critical mass

Chain reaction

Chain reaction

Very short summary

- Science communication is more than just lecturing the public about your work.
- Always put your audience first.
- Steal narrative tricks from writers and film makers.
- Think about how subtle jargon can be.
- Use mousetraps and pingpong balls if you can.