
Detection and characterization
of the singularities of functions
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Chirps everywhere

Credit : Patrick Flandrin

Ultrasound emitted by a bat

Gravitational wave

R(x) =
∞∑

n=1

sin(πn2x)
n2 EEG

First definition : a(t) cos(ϕ(t))
where a(t) and ϕ(t) have a “slow and smooth” evolution

AM-FM signals (Amplitude Modulated - Frequency Modulated)
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September 14th 2015 09 :50 :45 UTC

The LIGO (Laser Interferometer Gravitational-Wave Observatory)
observatories in Hanford (state of Washington) and Livingston
(Louisiana) performed the first detection of a gravitational wave



One minute of general relativity

Einstein predicted the existence of
gravitational waves (1916)

Consequences of the detection :

- Confirmation of general
relativity in extreme conditions
of mass and energy

- A new astronomy

Credit : http ://www.actusf.com/spip/L-actu-des-sciences-Avril-2014.html
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A few orders of magnitude
Signal emitted 1,4 billion years ago
Coalescence of 2 black holes of 36 and 29 solar masses
Energy dissipated in 0.2 seconds : 3 solar masses

Credit : http ://www.gravity.phys.uwm.edu/research/highlights/index.html?artfile=160211-51.xml

Size of the recorded signal before denoising : ∼ 10−18 m
Size of the gravitational wave which crossed the earth : 10−21 m

Radius of the hydrogen atom : 10−11 m
Radius of the atomic nucleus : 10−15 m
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Scientific challenges

Instrumental and Physics

An extreme sophistication
of the experimental device

Michelson Interferometer
with 2 arms of 4 km length

The laser beam is reflected
several hundreds of times

Rainer Weiss



The denoising algorithm : Frequency filtering

Gravitational wave GW150914 recorded by :
LIGO Hanford (H1, left) and Livingston (L1, right) detectors

Frequencies in the data Fourier transform of the filter
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The result of Fourier filtering



The Short-Time Fourier Transform (STFT)

Let ϕ be a Gaussian function

The short-time Fourier
transform of f is

Gf (x , ξ) =
∫
R

f (x)ϕ(t − x) e−2iπtξdt

f (t) =
∫ ∫

Gf (x , ξ) e2iπξt ϕ(t − x) dξ dx

D. Gabor
1971 Nobel prize laureate
for holography
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STFT of gravitational waves

B. Torresani P. Flandrin E. Chassande-Mottin



Time-frequency orthonormal bases?

(1) 1[k,k+1[(x) e2i π n x k , n ∈ Z

Gabor’s dream of “logons” : Expand any signal on the

ϕ(x − k) e2iπnx k ,n ∈ Z

where ϕ is a Gaussian (or, at least, a smooth, well localized function)

The Balian-Low theorem (1981) : If∫
(1 + t2)|g(t)|2dt <∞ et

∫
(1 + ξ2)|ĝ(ξ)|2dξ <∞

then any system of the form

g(x − a k) ei b n x k , n ∈ Z

is either incomplete or over-complete, and never is a basis of L2(R)

(1) is compatible with the Balian-Low theorem
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Beyond the Balian-Low theorem
T. Steger : A Riesz basis ϕn(x) of L2(R) cannot simultaneously verify

∃an, bn :

∫
(1+|t−an|2)|ϕn(t)|2dt <∞ and

∫
(1+|ξ−bn|2)|ϕ̂n(ξ)|2dξ <∞

( “strong” uncertainty principle for bases)

J. Bourgain constructed a basis with an optimal
time-frequency localization (but far from meeting
the requirements of signal processing)

How to beat Balian-Low?

In 1987 K. Wilson (1982 Nobel laureate for
renormalization theory) proposed a way :

Allow a double Fourier localization
around two frequencies of same
amplitude and opposite signs
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Wilson bases
Wilson bases (I. Daubechies, S. J., J.-L. Journé, 1991) are
orthonormal bases of the form

ϕ0,n(t) = ϕ(t − n) n ∈ Z,

ϕl,n(t) =


√

2ϕ
(

t − n
2

)
cos(2πlt) if l + n ∈ 2Z,

√
2ϕ
(

t − n
2

)
sin(2πlt) if l + n ∈ 2Z+ 1
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cos(2πlt) if l + n ∈ 2Z,

√
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(
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sin(2πlt) if l + n ∈ 2Z+ 1

I ϕ and ϕ̂ can both have exponential decay
I ϕ̂ can be compactly supported

J.-L. Journé ( † April 2016) I. Daubechies



Coherent Wave Burst

Algorithm due to S. Klimenko
and his collaborators based on a
union of dilated Wilson bases

Discrete
time-frequency
analysis
of the gravitational
wave

Advantages :
I Sparse representation of gravitational waves
I Fast decomposition algorithms (based on FFT)

Bottlenecks :
I Stability properties of the algorithm
I Which functions are sparse on such redundant bases?
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EEG

Credit : Dynamics of EEG Entropy : beyond signal plus noise

M. Ignaccolo, M. Latka, W. Jernajczyk, P. Grigolini and B.J. West
(2009)



Back to bats

Ultrasounds emitted by a bat

Time-Frequency analysis

Credit : Explorations in Time-frequency Analysis by P. Flandrin

A more precise definition of Chirps :
f (t) = a(t) cos(ϕ(t)) where∣∣∣∣a′(t)a(t)

∣∣∣∣ << ϕ′(t) and
ϕ”(t)
(ϕ′(t))2 << 1

|t − t0|−1/4 cos(ω|t − t0|5/8 + ϕ)
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Riemann’s nondifferentiable function

Zoom of Riemann’s function at a chirp

From G. Hardy to F. Broucke and J. Vindas (2023)



Riemann’s nondifferentiable function and turbulence
A new and surprizing connexion between Riemann’s function

R(x) =
∞∑

n=1

sin(πn2x)
n2

and turbulence was recently uncovered between Riemann’s function
and turbulence (V. Banica, A. Boritchev, D. Eceizabarrena, C. J.
Garcia-Cervera, F. de la Hoz, R. L. Jerrard, D. Smets, L. Vega, and V.
Vilaça Da Rocha) :

The complex-valued version

φ(x) = iπx +
∞∑

n=1

eiπn2x

n2

appears as the trajectory
of the corners of polygonal
vortex filaments that follow
the binormal flow

Credit : A. Boritchev, D. Eceizabarrena , V. Vilaça Da Rocha
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Riemann’s nondifferentiable function

R(x) =
∞∑

n=1

sin(πn2x)
n2

R(π + x) = L(x) + x3/2
(
R̃
(

1
x

)
+ xR̃1

(
1
x

)
+ · · ·

)
,

where (Y. Meyer and S. J.) :
I L(x) is affine,
I R̃ is (essentially) Riemann’s function,
I R̃1 its primitive, ...

How can we characterize such behaviors?
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Pointwise regularity exponent

f ∈ Cα(x0) it there exist C > 0 and a polynomial P of degree < α
such that

|f (x)− P(x − x0)| ≤ C|x − x0|α

The Hölder exponent of f at x0 is

hf (x0) = sup{α : f ∈ Cα(x0)}

Cusps CH(x) = |x − x0|H

Cusps satisfy

hf (x) = H and hf (−1)(x) = H + 1
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Pointwise regularity of oscillating singularities

Oscillating singularities

CH,β = |x − x0|H sin
(

1
|x−x0|β

)

Oscillating singularities satisfy

hf (x) = H and hf (−1)(x) = H + β + 1

How can one take advantage of this difference?

Use the wavelet characterization

of pointwise regularity
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Orthonormal wavelet bases

A wavelet basis on R is
generated by one smooth well localized,
oscillating wavelet ψ such that
the 2j/2ψ(2jx − k), j , k ∈ Z
form an orthonormal basis
of L2(R)

∀f ∈ L2(R),

f (x) =
∑
j∈Z

∑
k∈Z

cj,k 2j/2 ψ(2jx − k)

with
cj,k = 2j/2

∫
f (x) ψ(2jx − k) dx

Example : ψ = 1[0,1/2[ − 1[1/2,1[

(Haar wavelet) Daubechies wavelet

Credit : http ://www.kfs.oeaw.ac.at/content/blogcategory/0/502/lang,8859-1/



Orthonormal wavelet bases

Wilson vs. wavelet bases

Some advantages of orthonormal wavelet bases :

I Characterization of “most”
function spaces used in
analysis (Hölder, Sobolev,
Besov, ...)

I Characterization of
pointwise regularity

Yves Meyer, Stéphane Mallat and Ingrid Daubechies
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Wavelet leaders
Dyadic intervals : If k ∈ Z λ =

[
k
2j ,

k + 1
2j

)
Wavelet coefficients : cλ = 2j

∫
f (x)ψ(2jx − k)dx

3λ is the interval of same center as λ and three times wider

The wavelet leaders of a function f are the quantities

dλ = sup
λ′⊂3λ

|cλ′ |

dλ = supλ’∈  3 λ |cλ|

λ’∈  3 λ

c(j, k)

2j+2

2j+1

2j

...

...
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Characterization of pointwise smoothness
A function f is uniform Hölder if ∃ε > 0 : f ∈ Cε(R)
or, equivalently, if ∃ε > 0 : sup

λ∈Λj

≤ C 2−εj

Let λj(x0) denote the dyadic cube of width 2−j that contains x0

Theorem : (S. J. ) If f ∈ Cε(R) for an ε > 0, then

∀x0 ∈ Rd hf (x0) = lim inf
j→+∞

log(dλj (x0))

log(2−j)
.



Wavelet characterization of pointwise smoothness
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Function Regression Regression
on wavelet on wavelet
coefficients leaders

Log-log regressions of wavelet leaders yield a correct estimations of
pointwise Hölder exponents for all kinds of singularities
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Oscillating singularities
Mathematical examples

I Riemann series : Y. Meyer and S. J.
I Random wavelet series : P. Abry, R. Leonarduzzi, C. Melot, H.

Wendt, S.J. and C. Esser, B. Vedel, S.J.
I Sample paths of some specific Lévy processes : P. Balança

Multifractal analysis allows to derive information on the size of the
sets of points x where

hf (x) = H and hf (−1)(x) = H + β + 1
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Next challenges in applications
I Turbulence :

with Patrice Abry (ENS Lyon)
and Françoise Argoul
(Bordeaux University)

I Brain data :
with Jean-Marc Lina (Montréal)
and David Holcman (ENS Paris)

I Seismic recordings :
with Maarten de Hoop
(Rice University)

I Build a common framework for the two approaches
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If you want to know more on these topics

you are welcome to the next lectures

and the workshop !

(April 16-19)


